Leading UK food and non-food retailer with 1000+ convenience and supermarket stores across the UK.
The UK food retailer was looking for a robust methodology to understand potential uplift to ranging by improving localisation of its vegan-related range at the postcode level. As an emerging category, the retailer wanted to ensure that they anticipated ranging demand at the store-specific level.
We developed a probabilistic demographic demand model to help estimate the likely location of vegan population and then recommend ranging adjustments at the store-specific level. We then developed a bespoke heatmap and store-specific ranging and space recommendations.
Conduct literature review of existing research into vegan population characteristics
Analyse open source location intelligence datasets
Build heatmap with likely vegan population density
Analyse vegan-related SKUs and apportion probability of belong to a vegan shopping basket
Develop model to analyse supply-demand gaps at store-level
Client transaction database at SKU level of 500m+ transactions over 5 years
Range assortment database (including SKU description used for natural language processing)
Academic literature on vegan demographic characteristics
UK postcode vectors / mapping boundaries
UK census data
This bespoke model and location intelligence module was used to inform the retailer’s entire Vegan ranging strategy which was subsequently rolled out nationally for 750+ convenience and supermarket stores.
QuantSpark’s proprietary location intelligence modelling approach can be adjusted to help understand the location of a range of customer profile demographics. This is purely based on open source datasets and layers of inferences based on a detailed analysis of customer profiles.
This approach can be used to support “needs state” analysis. In detail this approach can help retailers understand more detail about who their customers are and exactly (within the nearest postcode sub-level) where they live based on layers of probabilistic assumptions.